Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Europace ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588067

RESUMO

BACKGROUND AND AIMS: Typical electrocardiogram (ECG) features of apical hypertrophic cardiomyopathy (ApHCM) include tall R waves and deep or giant T-wave inversion in the precordial leads, but these features are not always present. The ECG is used as the gatekeeper to cardiac imaging for diagnosis. We tested whether explainable advanced ECG (A-ECG) could accurately diagnose ApHCM. METHODS: A-ECG analysis was performed on standard resting 12-lead ECGs in patients with ApHCM (n = 75 overt, n = 32 relative [<15mm hypertrophy]), a subgroup of which underwent cardiovascular magnetic resonance, n = 92), and comparator subjects (n = 2449), including healthy volunteers (n = 1672), patients with coronary artery disease (n = 372), left ventricular electrical remodelling (n = 108), ischemic (n = 114) or non-ischemic cardiomyopathy (n = 57), and asymmetrical septal hypertrophy (ASH) HCM (n = 126). RESULTS: Multivariable logistic regression identified four A-ECG measures that together discriminated ApHCM from other diseases with high accuracy (area under the receiver operating characteristics curve (AUC) [bootstrapped 95% confidence interval] 0.982 [0.965-0.993]. Linear discriminant analysis also diagnosed ApHCM with high accuracy (AUC 0.989 [0.986-0.991]). CONCLUSION: Explainable A-ECG has excellent diagnostic accuracy for ApHCM, even when the hypertrophy is relative, with A-ECG analysis providing incremental diagnostic value over imaging alone. The electrical (ECG) and anatomical (wall thickness) disease features do not completely align, suggesting future diagnostic and management strategies may incorporate both features.

2.
Lancet Digit Health ; 6(4): e251-e260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519153

RESUMO

BACKGROUND: The diagnosis of cardiac amyloidosis can be established non-invasively by scintigraphy using bone-avid tracers, but visual assessment is subjective and can lead to misdiagnosis. We aimed to develop and validate an artificial intelligence (AI) system for standardised and reliable screening of cardiac amyloidosis-suggestive uptake and assess its prognostic value, using a multinational database of 99mTc-scintigraphy data across multiple tracers and scanners. METHODS: In this retrospective, international, multicentre, cross-tracer development and validation study, 16 241 patients with 19 401 scans were included from nine centres: one hospital in Austria (consecutive recruitment Jan 4, 2010, to Aug 19, 2020), five hospital sites in London, UK (consecutive recruitment Oct 1, 2014, to Sept 29, 2022), two centres in China (selected scans from Jan 1, 2021, to Oct 31, 2022), and one centre in Italy (selected scans from Jan 1, 2011, to May 23, 2023). The dataset included all patients referred to whole-body 99mTc-scintigraphy with an anterior view and all 99mTc-labelled tracers currently used to identify cardiac amyloidosis-suggestive uptake. Exclusion criteria were image acquisition at less than 2 h (99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid, 99mTc-hydroxymethylene diphosphonate, and 99mTc-methylene diphosphonate) or less than 1 h (99mTc-pyrophosphate) after tracer injection and if patients' imaging and clinical data could not be linked. Ground truth annotation was derived from centralised core-lab consensus reading of at least three independent experts (CN, TT-W, and JN). An AI system for detection of cardiac amyloidosis-associated high-grade cardiac tracer uptake was developed using data from one centre (Austria) and independently validated in the remaining centres. A multicase, multireader study and a medical algorithmic audit were conducted to assess clinician performance compared with AI and to evaluate and correct failure modes. The system's prognostic value in predicting mortality was tested in the consecutively recruited cohorts using cox proportional hazards models for each cohort individually and for the combined cohorts. FINDINGS: The prevalence of cases positive for cardiac amyloidosis-suggestive uptake was 142 (2%) of 9176 patients in the Austrian, 125 (2%) of 6763 patients in the UK, 63 (62%) of 102 patients in the Chinese, and 103 (52%) of 200 patients in the Italian cohorts. In the Austrian cohort, cross-validation performance showed an area under the curve (AUC) of 1·000 (95% CI 1·000-1·000). Independent validation yielded AUCs of 0·997 (0·993-0·999) for the UK, 0·925 (0·871-0·971) for the Chinese, and 1·000 (0·999-1·000) for the Italian cohorts. In the multicase multireader study, five physicians disagreed in 22 (11%) of 200 cases (Fleiss' kappa 0·89), with a mean AUC of 0·946 (95% CI 0·924-0·967), which was inferior to AI (AUC 0·997 [0·991-1·000], p=0·0040). The medical algorithmic audit demonstrated the system's robustness across demographic factors, tracers, scanners, and centres. The AI's predictions were independently prognostic for overall mortality (adjusted hazard ratio 1·44 [95% CI 1·19-1·74], p<0·0001). INTERPRETATION: AI-based screening of cardiac amyloidosis-suggestive uptake in patients undergoing scintigraphy was reliable, eliminated inter-rater variability, and portended prognostic value, with potential implications for identification, referral, and management pathways. FUNDING: Pfizer.


Assuntos
Amiloidose , Cardiomiopatias , Humanos , Amiloidose/diagnóstico por imagem , Amiloidose/metabolismo , Inteligência Artificial , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/metabolismo , Prognóstico , Cintilografia , Compostos Radiofarmacêuticos , Estudos Retrospectivos
3.
J Am Coll Cardiol ; 83(11): 1042-1055, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38385929

RESUMO

BACKGROUND: Ventricular arrhythmia in hypertrophic cardiomyopathy (HCM) relates to adverse structural change and genetic status. Cardiovascular magnetic resonance (CMR)-guided electrocardiographic imaging (ECGI) noninvasively maps cardiac structural and electrophysiological (EP) properties. OBJECTIVES: The purpose of this study was to establish whether in subclinical HCM (genotype [G]+ left ventricular hypertrophy [LVH]-), ECGI detects early EP abnormality, and in overt HCM, whether the EP substrate relates to genetic status (G+/G-LVH+) and structural phenotype. METHODS: This was a prospective 211-participant CMR-ECGI multicenter study of 70 G+LVH-, 104 LVH+ (51 G+/53 G-), and 37 healthy volunteers (HVs). Local activation time (AT), corrected repolarization time, corrected activation-recovery interval, spatial gradients (GAT/GRTc), and signal fractionation were derived from 1,000 epicardial sites per participant. Maximal wall thickness and scar burden were derived from CMR. A support vector machine was built to discriminate G+LVH- from HV and low-risk HCM from those with intermediate/high-risk score or nonsustained ventricular tachycardia. RESULTS: Compared with HV, subclinical HCM showed mean AT prolongation (P = 0.008) even with normal 12-lead electrocardiograms (ECGs) (P = 0.009), and repolarization was more spatially heterogenous (GRTc: P = 0.005) (23% had normal ECGs). Corrected activation-recovery interval was prolonged in overt vs subclinical HCM (P < 0.001). Mean AT was associated with maximal wall thickness; spatial conduction heterogeneity (GAT) and fractionation were associated with scar (all P < 0.05), and G+LVH+ had more fractionation than G-LVH+ (P = 0.002). The support vector machine discriminated subclinical HCM from HV (10-fold cross-validation accuracy 80% [95% CI: 73%-85%]) and identified patients at higher risk of sudden cardiac death (accuracy 82% [95% CI: 78%-86%]). CONCLUSIONS: In the absence of LVH or 12-lead ECG abnormalities, HCM sarcomere gene mutation carriers express an aberrant EP phenotype detected by ECGI. In overt HCM, abnormalities occur more severely with adverse structural change and positive genetic status.


Assuntos
Cardiomiopatia Hipertrófica , Cicatriz , Humanos , Estudos Prospectivos , Cicatriz/patologia , Imagem Cinética por Ressonância Magnética , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/genética , Eletrocardiografia , Hipertrofia Ventricular Esquerda/diagnóstico , Imageamento por Ressonância Magnética
4.
Magn Reson Med ; 91(1): 118-132, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37667643

RESUMO

PURPOSE: To investigate and mitigate the influence of physiological and acquisition-related parameters on myocardial blood flow (MBF) measurements obtained with myocardial Arterial Spin Labeling (myoASL). METHODS: A Flow-sensitive Alternating Inversion Recovery (FAIR) myoASL sequence with bSSFP and spoiled GRE (spGRE) readout is investigated for MBF quantification. Bloch-equation simulations and phantom experiments were performed to evaluate how variations in acquisition flip angle (FA), acquisition matrix size (AMS), heart rate (HR) and blood T 1 $$ {\mathrm{T}}_1 $$ relaxation time ( T 1 , B $$ {\mathrm{T}}_{1,B} $$ ) affect quantification of myoASL-MBF. In vivo myoASL-images were acquired in nine healthy subjects. A corrected MBF quantification approach was proposed based on subject-specific T 1 , B $$ {\mathrm{T}}_{1,B} $$ values and, for spGRE imaging, subtracting an additional saturation-prepared baseline from the original baseline signal. RESULTS: Simulated and phantom experiments showed a strong dependence on AMS and FA ( R 2 $$ {R}^2 $$ >0.73), which was eliminated in simulations and alleviated in phantom experiments using the proposed saturation-baseline correction in spGRE. Only a very mild HR dependence ( R 2 $$ {R}^2 $$ >0.59) was observed which was reduced when calculating MBF with individual T 1 , B $$ {\mathrm{T}}_{1,B} $$ . For corrected spGRE, in vivo mean global spGRE-MBF ranged from 0.54 to 2.59 mL/g/min and was in agreement with previously reported values. Compared to uncorrected spGRE, the intra-subject variability within a measurement (0.60 mL/g/min), between measurements (0.45 mL/g/min), as well as the inter-subject variability (1.29 mL/g/min) were improved by up to 40% and were comparable with conventional bSSFP. CONCLUSION: Our results show that physiological and acquisition-related factors can lead to spurious changes in myoASL-MBF if not accounted for. Using individual T 1 , B $$ {\mathrm{T}}_{1,B} $$ and a saturation-baseline can reduce these variations in spGRE and improve reproducibility of FAIR-myoASL against acquisition parameters.


Assuntos
Circulação Coronária , Imagem de Perfusão do Miocárdio , Humanos , Reprodutibilidade dos Testes , Circulação Coronária/fisiologia , Miocárdio , Frequência Cardíaca , Imagens de Fantasmas , Imagem de Perfusão do Miocárdio/métodos
5.
J Cardiovasc Magn Reson ; 25(1): 73, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044439

RESUMO

BACKGROUND: Electrocardiographic imaging (ECGI) generates electrophysiological (EP) biomarkers while cardiovascular magnetic resonance (CMR) imaging provides data about myocardial structure, function and tissue substrate. Combining this information in one examination is desirable but requires an affordable, reusable, and high-throughput solution. We therefore developed the CMR-ECGI vest and carried out this technical development study to assess its feasibility and repeatability in vivo. METHODS: CMR was prospectively performed at 3T on participants after collecting surface potentials using the locally designed and fabricated 256-lead ECGI vest. Epicardial maps were reconstructed to generate local EP parameters such as activation time (AT), repolarization time (RT) and activation recovery intervals (ARI). 20 intra- and inter-observer and 8 scan re-scan repeatability tests. RESULTS: 77 participants were recruited: 27 young healthy volunteers (HV, 38.9 ± 8.5 years, 35% male) and 50 older persons (77.0 ± 0.1 years, 52% male). CMR-ECGI was achieved in all participants using the same reusable, washable vest without complications. Intra- and inter-observer variability was low (correlation coefficients [rs] across unipolar electrograms = 0.99 and 0.98 respectively) and scan re-scan repeatability was high (rs between 0.81 and 0.93). Compared to young HV, older persons had significantly longer RT (296.8 vs 289.3 ms, p = 0.002), ARI (249.8 vs 235.1 ms, p = 0.002) and local gradients of AT, RT and ARI (0.40 vs 0.34 ms/mm, p = 0,01; 0.92 vs 0.77 ms/mm, p = 0.03; and 1.12 vs 0.92 ms/mm, p = 0.01 respectively). CONCLUSION: Our high-throughput CMR-ECGI solution is feasible and shows good reproducibility in younger and older participants. This new technology is now scalable for high throughput research to provide novel insights into arrhythmogenesis and potentially pave the way for more personalised risk stratification. CLINICAL TRIAL REGISTRATION: Title: Multimorbidity Life-Course Approach to Myocardial Health-A Cardiac Sub-Study of the MRC National Survey of Health and Development (NSHD) (MyoFit46). National Clinical Trials (NCT) number: NCT05455125. URL: https://clinicaltrials.gov/ct2/show/NCT05455125?term=MyoFit&draw=2&rank=1.


Assuntos
Coração , Imageamento por Ressonância Magnética , Idoso , Feminino , Humanos , Masculino , Estudos de Viabilidade , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Adulto , Pessoa de Meia-Idade
6.
Artigo em Inglês | MEDLINE | ID: mdl-37831014

RESUMO

BACKGROUND: There is no acceptable maximum wall thickness (MWT) threshold for diagnosing apical hypertrophic cardiomyopathy (ApHCM), with guidelines referring to ≥15 mm MWT for all hypertrophic cardiomyopathy subtypes. A normal myocardium naturally tapers apically; a fixed diagnostic threshold fails to account for this. Using cardiac magnetic resonance, "relative" ApHCM has been described with typical electrocardiographic features, loss of apical tapering, and cavity obliteration but also with MWT <15 mm. OBJECTIVES: The authors aimed to define normal apical wall thickness thresholds in healthy subjects and use these to accurately identify ApHCM. METHODS: The following healthy subjects were recruited: healthy UK Biobank imaging substudy subjects (n = 4,112) and an independent healthy volunteer group (n = 489). A clinically defined disease population of 104 ApHCM subjects was enrolled, with 72 overt (MWT ≥15 mm) and 32 relative (MWT <15 mm but typical electrocardiographic/imaging findings) ApHCM subjects. Cardiac magnetic resonance-derived MWT was measured in 16 segments using a published clinically validated machine learning algorithm. Segmental normal reference ranges were created and indexed (for age, sex, and body surface area), and diagnostic performance was assessed. RESULTS: In healthy cohorts, there was no clinically significant age-related difference for apical wall thickness. There were sex-related differences, but these were not clinically significant after indexing to body surface area. Therefore, segmental reference ranges for apical hypertrophy required indexing to body surface area only (not age or sex). The upper limit of normal (the largest of the 4 apical segments measured) corresponded to a maximum apical MWT in healthy subjects of 5.2 to 5.6 mm/m2 with an accuracy of 0.94 (the unindexed equivalent being 11 mm). This threshold was categorized as abnormal in 99% (71/72) of overt ApHCM patients, 78% (25/32) of relative ApHCM patients, 3% (122/4,112) of UK Biobank subjects, and 3% (13/489) of healthy volunteers. CONCLUSIONS: Per-segment indexed apical wall thickness thresholds are highly accurate for detecting apical hypertrophy, providing confidence to the reader to diagnose ApHCM in those not reaching current internationally recognized criteria.

7.
Circulation ; 148(10): 808-818, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37463608

RESUMO

BACKGROUND: In hypertrophic cardiomyopathy (HCM), myocyte disarray and microvascular disease (MVD) have been implicated in adverse events, and recent evidence suggests that these may occur early. As novel therapy provides promise for disease modification, detection of phenotype development is an emerging priority. To evaluate their utility as early and disease-specific biomarkers, we measured myocardial microstructure and MVD in 3 HCM groups-overt, either genotype-positive (G+LVH+) or genotype-negative (G-LVH+), and subclinical (G+LVH-) HCM-exploring relationships with electrical changes and genetic substrate. METHODS: This was a multicenter collaboration to study 206 subjects: 101 patients with overt HCM (51 G+LVH+ and 50 G-LVH+), 77 patients with G+LVH-, and 28 matched healthy volunteers. All underwent 12-lead ECG, quantitative perfusion cardiac magnetic resonance imaging (measuring myocardial blood flow, myocardial perfusion reserve, and perfusion defects), and cardiac diffusion tensor imaging measuring fractional anisotropy (lower values expected with more disarray), mean diffusivity (reflecting myocyte packing/interstitial expansion), and second eigenvector angle (measuring sheetlet orientation). RESULTS: Compared with healthy volunteers, patients with overt HCM had evidence of altered microstructure (lower fractional anisotropy, higher mean diffusivity, and higher second eigenvector angle; all P<0.001) and MVD (lower stress myocardial blood flow and myocardial perfusion reserve; both P<0.001). Patients with G-LVH+ were similar to those with G+LVH+ but had elevated second eigenvector angle (P<0.001 after adjustment for left ventricular hypertrophy and fibrosis). In overt disease, perfusion defects were found in all G+ but not all G- patients (100% [51/51] versus 82% [41/50]; P=0.001). Patients with G+LVH- compared with healthy volunteers similarly had altered microstructure, although to a lesser extent (all diffusion tensor imaging parameters; P<0.001), and MVD (reduced stress myocardial blood flow [P=0.015] with perfusion defects in 28% versus 0 healthy volunteers [P=0.002]). Disarray and MVD were independently associated with pathological electrocardiographic abnormalities in both overt and subclinical disease after adjustment for fibrosis and left ventricular hypertrophy (overt: fractional anisotropy: odds ratio for an abnormal ECG, 3.3, P=0.01; stress myocardial blood flow: odds ratio, 2.8, P=0.015; subclinical: fractional anisotropy odds ratio, 4.0, P=0.001; myocardial perfusion reserve odds ratio, 2.2, P=0.049). CONCLUSIONS: Microstructural alteration and MVD occur in overt HCM and are different in G+ and G- patients. Both also occur in the absence of hypertrophy in sarcomeric mutation carriers, in whom changes are associated with electrocardiographic abnormalities. Measurable changes in myocardial microstructure and microvascular function are early-phenotype biomarkers in the emerging era of disease-modifying therapy.


Assuntos
Cardiomiopatia Hipertrófica , Hipertrofia Ventricular Esquerda , Humanos , Sarcômeros/genética , Imagem de Tensor de Difusão , Predisposição Genética para Doença , Mutação , Cardiomiopatia Hipertrófica/diagnóstico , Fenótipo , Biomarcadores , Fibrose
8.
J Cardiovasc Magn Reson ; 25(1): 19, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36935515

RESUMO

INTRODUCTION: A long T2 relaxation time can reflect oedema, and myocardial inflammation when combined with increased plasma troponin levels. Cardiovascular magnetic resonance (CMR) T2 mapping therefore has potential to provide a key diagnostic and prognostic biomarkers. However, T2 varies by scanner, software, and sequence, highlighting the need for standardization and for a quality assurance system for T2 mapping in CMR. AIM: To fabricate and assess a phantom dedicated to the quality assurance of T2 mapping in CMR. METHOD: A T2 mapping phantom was manufactured to contain 9 T1 and T2 (T1|T2) tubes to mimic clinically relevant native and post-contrast T2 in myocardium across the health to inflammation spectrum (i.e., 43-74 ms) and across both field strengths (1.5 and 3 T). We evaluated the phantom's structural integrity, B0 and B1 uniformity using field maps, and temperature dependence. Baseline reference T1|T2 were measured using inversion recovery gradient echo and single-echo spin echo (SE) sequences respectively, both with long repetition times (10 s). Long-term reproducibility of T1|T2 was determined by repeated T1|T2 mapping of the phantom at baseline and at 12 months. RESULTS: The phantom embodies 9 internal agarose-containing T1|T2 tubes doped with nickel di-chloride (NiCl2) as the paramagnetic relaxation modifier to cover the clinically relevant spectrum of myocardial T2. The tubes are surrounded by an agarose-gel matrix which is doped with NiCl2 and packed with high-density polyethylene (HDPE) beads. All tubes at both field strengths, showed measurement errors up to ≤ 7.2 ms [< 14.7%] for estimated T2 by balanced steady-state free precession T2 mapping compared to reference SE T2 with the exception of the post-contrast tube of ultra-low T1 where the deviance was up to 16 ms [40.0%]. At 12 months, the phantom remained free of air bubbles, susceptibility, and off-resonance artifacts. The inclusion of HDPE beads effectively flattened the B0 and B1 magnetic fields in the imaged slice. Independent temperature dependency experiments over the 13-38 °C range confirmed the greater stability of shorter vs longer T1|T2 tubes. Excellent long-term (12-month) reproducibility of measured T1|T2 was demonstrated across both field strengths (all coefficients of variation < 1.38%). CONCLUSION: The T2 mapping phantom demonstrates excellent structural integrity, B0 and B1 uniformity, and reproducibility of its internal tube T1|T2 out to 1 year. This device may now be mass-produced to support the quality assurance of T2 mapping in CMR.


Assuntos
Imageamento por Ressonância Magnética , Polietileno , Humanos , Reprodutibilidade dos Testes , Sefarose , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética/métodos , Miocárdio/patologia , Imagens de Fantasmas , Espectroscopia de Ressonância Magnética , Inflamação/patologia
9.
Front Cardiovasc Med ; 9: 917180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247474

RESUMO

Late gadolinium enhancement (LGE) with cardiac magnetic resonance (CMR) imaging is the clinical reference for assessment of myocardial scar and focal fibrosis. However, current LGE techniques are confined to imaging of a single cardiac phase, which hampers assessment of scar motility and does not allow cross-comparison between multiple phases. In this work, we investigate a three step approach to obtain cardiac phase-resolved LGE images: (1) Acquisition of cardiac phase-resolved imaging data with varying T 1 weighting. (2) Generation of semi-quantitative T 1 * maps for each cardiac phase. (3) Synthetization of LGE contrast to obtain functional LGE images. The proposed method is evaluated in phantom imaging, six healthy subjects at 3T and 20 patients at 1.5T. Phantom imaging at 3T demonstrates consistent contrast throughout the cardiac cycle with a coefficient of variation of 2.55 ± 0.42%. In-vivo results show reliable LGE contrast with thorough suppression of the myocardial tissue is healthy subjects. The contrast between blood and myocardium showed moderate variation throughout the cardiac cycle in healthy subjects (coefficient of variation 18.2 ± 3.51%). Images were acquired at 40-60 ms and 80 ms temporal resolution, at 3T and 1.5, respectively. Functional LGE images acquired in patients with myocardial scar visualized scar tissue throughout the cardiac cycle, albeit at noticeably lower imaging resolution and noise resilience than the reference technique. The proposed technique bears the promise of integrating the advantages of phase-resolved CMR with LGE imaging, but further improvements in the acquisition quality are warranted for clinical use.

10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1694-1697, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086364

RESUMO

Ischemic heart disease (IHD) is one of the leading causes of death worldwide. Myocardial infarction (MI) represents a third of all IHD cases, and cardiac magnetic resonance imaging (MRI) is often used to assess its damage to myocardial viability. Late gadolinium enhancement (LGE) is the current gold standard, but the use of gadolinium-based agents limits the clinical applicability in some patients. Spin-lock (SL) dispersion has recently been proposed as a promising non-contrast biomarker for the assessment of MI. However, at 3T, the required range of SL preparations acquired at different amplitudes suffers from specific absorption rate (SAR) limitations and off-resonance artifacts. Relaxation Along a Fictitious Field (RAFF) is an alternative to SL preparations with lower SAR requirements, while still sampling relaxation in the rotating frame. In this study, a single breath-hold simultaneous TRAFF2 and T2 mapping sequence is proposed for SL dispersion mapping at 3T. Excellent reproducibility (coefficient of variations lower than 10%) was achieved in phantom experiments, indicating good intrascan repeatability. The average myocardial TRAFF2, T2, and SL dispersion obtained with the proposed sequence (68.0±10.7 ms, 44.0±4.0 ms, and 0.4±0.2 ×10-4 s2, respectively) were comparable to the reference methods (62.7±11.7 ms, 41.2±2.4 ms, and 0.3±0.2x 10-4s2, respectively). High visual map quality, free of B0 and B1+ related artifacts, for T2, TRAFF2, and SL dispersion maps were obtained in phantoms and in vivo, suggesting promise in clinical use at 3T. Clinical relevance - and imaging promises non-contrast assessment of scar and focal fibrosis in a single breath-hold using approximate spin-lock dispersion mapping.


Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Meios de Contraste , Gadolínio , Humanos , Imageamento por Ressonância Magnética/métodos , Isquemia Miocárdica/diagnóstico por imagem , Miocárdio/patologia , Reprodutibilidade dos Testes
11.
Magn Reson Imaging ; 93: 15-32, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35914654

RESUMO

Cardiac imaging is progressing from simple imaging of heart structure and function to techniques visualizing and measuring underlying tissue biological changes that can potentially define disease and therapeutic options. These techniques exploit underlying tissue magnetic relaxation times: T1, T2 and T2*. Initial weighting methods showed myocardial heterogeneity, detecting regional disease. Current methods are now fully quantitative generating intuitive color maps that do not only expose regionality, but also diffuse changes - meaning that between-scan comparisons can be made to define disease (compared to normal) and to monitor interval change (compared to old scans). T1 is now familiar and used clinically in multiple scenarios, yet some technical challenges remain. T2 is elevated with increased tissue water - edema. Should there also be blood troponin elevation, this edema likely reflects inflammation, a key biological process. T2* falls in the presence of magnetic/paramagnetic materials - practically, this means it measures tissue iron, either after myocardial hemorrhage or in myocardial iron overload. This review discusses how T2 and T2⁎ imaging work (underlying physics, innovations, dependencies, performance), current and emerging use cases, quality assurance processes for global delivery and future research directions.


Assuntos
Cardiomiopatias , Imageamento por Ressonância Magnética , Edema , Coração/diagnóstico por imagem , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Miocárdio , Valor Preditivo dos Testes
12.
BMC Cardiovasc Disord ; 22(1): 140, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365075

RESUMO

BACKGROUND: The life course accumulation of overt and subclinical myocardial dysfunction contributes to older age mortality, frailty, disability and loss of independence. The Medical Research Council National Survey of Health and Development (NSHD) is the world's longest running continued surveillance birth cohort providing a unique opportunity to understand life course determinants of myocardial dysfunction as part of MyoFit46-the cardiac sub-study of the NSHD. METHODS: We aim to recruit 550 NSHD participants of approximately 75 years+ to undertake high-density surface electrocardiographic imaging (ECGI) and stress perfusion cardiovascular magnetic resonance (CMR). Through comprehensive myocardial tissue characterization and 4-dimensional flow we hope to better understand the burden of clinical and subclinical cardiovascular disease. Supercomputers will be used to combine the multi-scale ECGI and CMR datasets per participant. Rarely available, prospectively collected whole-of-life data on exposures, traditional risk factors and multimorbidity will be studied to identify risk trajectories, critical change periods, mediators and cumulative impacts on the myocardium. DISCUSSION: By combining well curated, prospectively acquired longitudinal data of the NSHD with novel CMR-ECGI data and sharing these results and associated pipelines with the CMR community, MyoFit46 seeks to transform our understanding of how early, mid and later-life risk factor trajectories interact to determine the state of cardiovascular health in older age. TRIAL REGISTRATION: Prospectively registered on ClinicalTrials.gov with trial ID: 19/LO/1774 Multimorbidity Life-Course Approach to Myocardial Health- A Cardiac Sub-Study of the MCRC National Survey of Health and Development (NSHD).


Assuntos
Doenças Cardiovasculares , Imageamento por Ressonância Magnética , Idoso , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/epidemiologia , Inquéritos Epidemiológicos , Coração , Humanos , Miocárdio
13.
JACC Cardiovasc Imaging ; 14(11): 2155-2166, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975819

RESUMO

OBJECTIVES: The purpose of this study was to detect cardiovascular changes after mild severe acute respiratory syndrome-coronavirus-2 infection. BACKGROUND: Concern exists that mild coronavirus disease 2019 may cause myocardial and vascular disease. METHODS: Participants were recruited from COVIDsortium, a 3-hospital prospective study of 731 health care workers who underwent first-wave weekly symptom, polymerase chain reaction, and serology assessment over 4 months, with seroconversion in 21.5% (n = 157). At 6 months post-infection, 74 seropositive and 75 age-, sex-, and ethnicity-matched seronegative control subjects were recruited for cardiovascular phenotyping (comprehensive phantom-calibrated cardiovascular magnetic resonance and blood biomarkers). Analysis was blinded, using objective artificial intelligence analytics where available. RESULTS: A total of 149 subjects (mean age 37 years, range 18 to 63 years, 58% women) were recruited. Seropositive infections had been mild with case definition, noncase definition, and asymptomatic disease in 45 (61%), 18 (24%), and 11 (15%), respectively, with 1 person hospitalized (for 2 days). Between seropositive and seronegative groups, there were no differences in cardiac structure (left ventricular volumes, mass, atrial area), function (ejection fraction, global longitudinal shortening, aortic distensibility), tissue characterization (T1, T2, extracellular volume fraction mapping, late gadolinium enhancement) or biomarkers (troponin, N-terminal pro-B-type natriuretic peptide). With abnormal defined by the 75 seronegatives (2 SDs from mean, e.g., ejection fraction <54%, septal T1 >1,072 ms, septal T2 >52.4 ms), individuals had abnormalities including reduced ejection fraction (n = 2, minimum 50%), T1 elevation (n = 6), T2 elevation (n = 9), late gadolinium enhancement (n = 13, median 1%, max 5% of myocardium), biomarker elevation (borderline troponin elevation in 4; all N-terminal pro-B-type natriuretic peptide normal). These were distributed equally between seropositive and seronegative individuals. CONCLUSIONS: Cardiovascular abnormalities are no more common in seropositive versus seronegative otherwise healthy, workforce representative individuals 6 months post-mild severe acute respiratory syndrome-coronavirus-2 infection.


Assuntos
COVID-19 , Anormalidades Cardiovasculares , Adolescente , Adulto , Inteligência Artificial , Estudos de Casos e Controles , Meios de Contraste , Feminino , Gadolínio , Pessoal de Saúde , Humanos , Imagem Cinética por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Miocárdio , Valor Preditivo dos Testes , Estudos Prospectivos , SARS-CoV-2 , Função Ventricular Esquerda , Adulto Jovem
14.
JACC Cardiovasc Imaging ; 14(11): 2107-2119, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34023269

RESUMO

OBJECTIVES: The purpose of this study was to explore the prognostic significance of PTT and PBVi using an automated, inline method of estimation using CMR. BACKGROUND: Pulmonary transit time (PTT) and pulmonary blood volume index (PBVi) (the product of PTT and cardiac index), are quantitative biomarkers of cardiopulmonary status. The development of cardiovascular magnetic resonance (CMR) quantitative perfusion mapping permits their automated derivation, facilitating clinical adoption. METHODS: In this retrospective 2-center study of patients referred for clinical myocardial perfusion assessment using CMR, analysis of right and left ventricular cavity arterial input function curves from first pass perfusion was performed automatically (incorporating artificial intelligence techniques), allowing estimation of PTT and subsequent derivation of PBVi. Association with major adverse cardiovascular events (MACE) and all-cause mortality were evaluated using Cox proportional hazard models, after adjusting for comorbidities and CMR parameters. RESULTS: A total of 985 patients (67% men, median age 62 years [interquartile range (IQR): 52 to 71 years]) were included, with median left ventricular ejection fraction (LVEF) of 62% (IQR: 54% to 69%). PTT increased with age, male sex, atrial fibrillation, and left atrial area, and reduced with LVEF, heart rate, diabetes, and hypertension (model r2 = 0.57). Over a median follow-up period of 28.6 months (IQR: 22.6 to 35.7 months), MACE occurred in 61 (6.2%) patients. After adjusting for prognostic factors, both PTT and PBVi independently predicted MACE, but not all-cause mortality. There was no association between cardiac index and MACE. For every 1 × SD (2.39-s) increase in PTT, the adjusted hazard ratio for MACE was 1.43 (95% confidence interval [CI]: 1.10 to 1.85; p = 0.007). The adjusted hazard ratio for 1 × SD (118 ml/m2) increase in PBVi was 1.42 (95% CI: 1.13 to 1.78; p = 0.002). CONCLUSIONS: Pulmonary transit time (and its derived parameter pulmonary blood volume index), measured automatically without user interaction as part of CMR perfusion mapping, independently predicted adverse cardiovascular outcomes. These biomarkers may offer additional insights into cardiopulmonary function beyond conventional predictors including ejection fraction.


Assuntos
Inteligência Artificial , Função Ventricular Esquerda , Volume Sanguíneo , Feminino , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Perfusão , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Volume Sistólico
15.
Eur Heart J ; 42(19): 1866-1878, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33596594

RESUMO

BACKGROUND: Troponin elevation is common in hospitalized COVID-19 patients, but underlying aetiologies are ill-defined. We used multi-parametric cardiovascular magnetic resonance (CMR) to assess myocardial injury in recovered COVID-19 patients. METHODS AND RESULTS: One hundred and forty-eight patients (64 ± 12 years, 70% male) with severe COVID-19 infection [all requiring hospital admission, 48 (32%) requiring ventilatory support] and troponin elevation discharged from six hospitals underwent convalescent CMR (including adenosine stress perfusion if indicated) at median 68 days. Left ventricular (LV) function was normal in 89% (ejection fraction 67% ± 11%). Late gadolinium enhancement and/or ischaemia was found in 54% (80/148). This comprised myocarditis-like scar in 26% (39/148), infarction and/or ischaemia in 22% (32/148) and dual pathology in 6% (9/148). Myocarditis-like injury was limited to three or less myocardial segments in 88% (35/40) of cases with no associated LV dysfunction; of these, 30% had active myocarditis. Myocardial infarction was found in 19% (28/148) and inducible ischaemia in 26% (20/76) of those undergoing stress perfusion (including 7 with both infarction and ischaemia). Of patients with ischaemic injury pattern, 66% (27/41) had no past history of coronary disease. There was no evidence of diffuse fibrosis or oedema in the remote myocardium (T1: COVID-19 patients 1033 ± 41 ms vs. matched controls 1028 ± 35 ms; T2: COVID-19 46 ± 3 ms vs. matched controls 47 ± 3 ms). CONCLUSIONS: During convalescence after severe COVID-19 infection with troponin elevation, myocarditis-like injury can be encountered, with limited extent and minimal functional consequence. In a proportion of patients, there is evidence of possible ongoing localized inflammation. A quarter of patients had ischaemic heart disease, of which two-thirds had no previous history. Whether these observed findings represent pre-existing clinically silent disease or de novo COVID-19-related changes remain undetermined. Diffuse oedema or fibrosis was not detected.


Assuntos
COVID-19 , Miocardite , Meios de Contraste , Feminino , Gadolínio , Humanos , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Miocardite/diagnóstico por imagem , Miocárdio , Valor Preditivo dos Testes , SARS-CoV-2 , Troponina , Função Ventricular Esquerda
16.
MAGMA ; 31(1): 101-113, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28608326

RESUMO

OBJECTIVES: Our objectives involved identifying whether repeated averaging in basal and mid left ventricular myocardial levels improves precision and correlation with collagen volume fraction for 11 heartbeat MOLLI T 1 mapping versus assessment at a single ventricular level. MATERIALS AND METHODS: For assessment of T 1 mapping precision, a cohort of 15 healthy volunteers underwent two CMR scans on separate days using an 11 heartbeat MOLLI with a 5(3)3 beat scheme to measure native T 1 and a 4(1)3(1)2 beat post-contrast scheme to measure post-contrast T 1, allowing calculation of partition coefficient and ECV. To assess correlation of T 1 mapping with collagen volume fraction, a separate cohort of ten aortic stenosis patients scheduled to undergo surgery underwent one CMR scan with this 11 heartbeat MOLLI scheme, followed by intraoperative tru-cut myocardial biopsy. Six models of myocardial diffuse fibrosis assessment were established with incremental inclusion of imaging by averaging of the basal and mid-myocardial left ventricular levels, and each model was assessed for precision and correlation with collagen volume fraction. RESULTS: A model using 11 heart beat MOLLI imaging of two basal and two mid ventricular level averaged T 1 maps provided improved precision (Intraclass correlation 0.93 vs 0.84) and correlation with histology (R 2 = 0.83 vs 0.36) for diffuse fibrosis compared to a single mid-ventricular level alone. ECV was more precise and correlated better than native T 1 mapping. CONCLUSION: T 1 mapping sequences with repeated averaging could be considered for applications of 11 heartbeat MOLLI, especially when small changes in native T 1/ECV might affect clinical management.


Assuntos
Técnicas de Imagem Cardíaca/métodos , Colágeno/metabolismo , Imageamento por Ressonância Magnética/métodos , Miocárdio/metabolismo , Miocárdio/patologia , Adulto , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Biópsia , Técnicas de Imagem Cardíaca/estatística & dados numéricos , Estudos de Coortes , Meios de Contraste , Feminino , Fibrose , Gadolínio , Voluntários Saudáveis , Frequência Cardíaca , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Modelos Cardiovasculares , Modelos Estatísticos , Reprodutibilidade dos Testes
17.
Can J Cardiol ; 33(10): 1335.e9-1335.e11, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28870471

RESUMO

We describe the case of a 66-year old woman with the extremely rare combination of sarcoidosis and amyloidosis (light chain) and the important role of cardiovascular magnetic resonance imaging to differentiate between these 2 infiltrative diseases. Myocardial characterization with T1 mapping can improve disease detection, especially in overlap cases, and possibly obviate the need for cardiac biopsy.


Assuntos
Amiloidose/diagnóstico , Cardiomiopatias/diagnóstico , Imagem Cinética por Ressonância Magnética/métodos , Miocárdio/patologia , Sarcoidose/diagnóstico , Idoso , Amiloidose/complicações , Biópsia , Diagnóstico Diferencial , Feminino , Humanos , Sarcoidose/complicações
18.
Biomed Eng Online ; 14: 88, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26445883

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most common heart rhythm disorder. In order for late Gd enhancement cardiovascular magnetic resonance (LGE CMR) to ameliorate the AF management, the ready availability of the accurate enhancement segmentation is required. However, the computer-aided segmentation of enhancement in LGE CMR of AF is still an open question. Additionally, the number of centres that have reported successful application of LGE CMR to guide clinical AF strategies remains low, while the debate on LGE CMR's diagnostic ability for AF still holds. The aim of this study is to propose a method that reliably distinguishes enhanced (abnormal) from non-enhanced (healthy) tissue within the left atrial wall of (pre-ablation and 3 months post-ablation) LGE CMR data-sets from long-standing persistent AF patients studied at our centre. METHODS: Enhancement segmentation was achieved by employing thresholds benchmarked against the statistics of the whole left atrial blood-pool (LABP). The test-set cross-validation mechanism was applied to determine the input feature representation and algorithm that best predict enhancement threshold levels. RESULTS: Global normalized intensity threshold levels T PRE  = 1 1/4 and T POST  = 1 5/8 were found to segment enhancement in data-sets acquired pre-ablation and at 3 months post-ablation, respectively. The segmentation results were corroborated by using visual inspection of LGE CMR brightness levels and one endocardial bipolar voltage map. The measured extent of pre-ablation fibrosis fell within the normal range for the specific arrhythmia phenotype. 3D volume renderings of segmented post-ablation enhancement emulated the expected ablation lesion patterns. By comparing our technique with other related approaches that proposed different threshold levels (although they also relied on reference regions from within the LABP) for segmenting enhancement in LGE CMR data-sets of AF patients, we illustrated that the cut-off levels employed by other centres may not be usable for clinical studies performed in our centre. CONCLUSIONS: The proposed technique has great potential for successful employment in the AF management within our centre. It provides a highly desirable validation of the LGE CMR technique for AF studies. Inter-centre differences in the CMR acquisition protocol and image analysis strategy inevitably impede the selection of a universally optimal algorithm for segmentation of enhancement in AF studies.


Assuntos
Fibrilação Atrial/diagnóstico , Fibrilação Atrial/patologia , Meios de Contraste , Gadolínio , Átrios do Coração/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Técnicas de Ablação , Algoritmos , Fibrilação Atrial/terapia , Automação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador
19.
J Magn Reson Imaging ; 41(4): 1030-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24796700

RESUMO

PURPOSE: To develop navigator-gated free-breathing 3D spiral late gadolinium enhancement (LGE) imaging of the left ventricle at 3T and compare it with conventional breath-hold 2D Cartesian imaging. MATERIALS AND METHODS: Equivalent slices from 3D spiral and multislice 2D Cartesian acquisitions were compared in 15 subjects in terms of image quality (1, nondiagnostic to 5, excellent), sharpness (1-3), and presence of artifacts (0-2). Blood signal-to-noise ratio (SNR), blood/myocardium contrast-to-noise ratio (CNR), and quantitative sharpness were also compared. RESULTS: All 3D spiral scans were completed faster than an equivalent 2D Cartesian short-axis stack (85 vs. 230 sec, P < 0.001). Image quality was significantly higher for 2D Cartesian images than 3D spiral images (3.7 ± 0.87 vs. 3.4 ± 1.05, P = 0.03) but not for mid or apical slices specifically. There were no significant differences in qualitative and quantitative sharpness (95% confidence interval [CI]: 1.91 ± 0.67 vs. 1.93 ± 0.69, P = 0.83 and 95% CI: 0.41 ± 0.07 vs. 0.40 ± 0.09, P = 0.25, respectively), artifact scores (95% CI: 0.16 ± 0.37 vs. 0.40 ± 0.58, P = 0.16), SNR (95% CI: 121.5 ± 55.3 vs. 136.4 ± 77.9, P = 0.13), and CNR (95% CI: 101.6 ± 48.4 vs. 102.7 ± 61.8, P = 0.98). Similar enhancement ratios (0.65 vs. 0.62) and volumes (13.8 vs. 14.1cm(3) ) were measured from scar regions of three patients. CONCLUSIO: Navigator-gated 3D spiral LGE imaging can be performed in significantly and substantially shorter acquisition durations, although with some reduced image quality, than multiple breath-hold 2D Cartesian imaging while providing higher resolution and contiguous coverage.


Assuntos
Ventrículos do Coração/patologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Compostos Organometálicos/administração & dosagem , Disfunção Ventricular Esquerda/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Meios de Contraste/administração & dosagem , Feminino , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Mecânica Respiratória , Sensibilidade e Especificidade
20.
Clin Exp Rheumatol ; 32(4 Suppl 84): S99-102, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25268665

RESUMO

OBJECTIVES: Vascular disease is a serious complication of Behçet's syndrome (BS), occurring in up to 20% of subjects. Superficial thrombophlebitis, deep vein thrombosis, and arterial aneurysm formation are the most common manifestations. Venous thrombosis is thought to result from vessel wall inflammation. This work investigated the potential usefulness of high resolution magnetic resonance imaging (MRI) to identify inflammation in the venous walls in BS subjects. METHODS: Seven healthy control (HC) subjects and five BS subjects were scanned with 3T MRI (Siemens Skyra). A standard MRI sequence was adapted for use in the venous system. Metronome guided breathing generated a regular respiratory variation of venous blood velocity. The vein wall imaging was triggered at an appropriate delay after the metronome. The popliteal vein was imaged. Vein wall images were ranked based on wall thickness and signal enhancement by two blinded, experienced observers. RESULTS: Popliteal vein rank scores were found to be significantly increased in BS versus HC subjects by the first observer (p(Observer 1)=0.025, p(Observer2)=0.07) and also averaging both observers (p=0.05). The repeated images of each subject gave a degree of variability in results, potentially from drifting response to metronome guidance over the 10 minute scan. CONCLUSIONS: MR imaging can detect increased vein wall thickness in BS subjects compared to healthy controls. Variable response to the metronome-guided breathing requires further development.


Assuntos
Síndrome de Behçet/patologia , Angiografia por Ressonância Magnética/métodos , Veia Poplítea/patologia , Trombose Venosa/patologia , Adulto , Estudos de Viabilidade , Feminino , Humanos , Angiografia por Ressonância Magnética/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Doenças Vasculares/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...